top of page
Jihwan Kim

Using INFO.xxx DAX Functions to Create Tables with Semantic Model Information

In a previous blog post (link provided below), I discussed how to store tables in the Fabric Lakehouse that are generated using INFO.xxx DAX functions.



In this writing, I would like to share how I learned to understand and write DAX queries using INFO.xxx functions to create tables that contain information about the semantic model. The tables created here will eventually be imported into Power BI to generate a "Documenting Power BI Semantic Models" report.


To start, I determine the information to gather from the semantic model. The list below outlines the details I want to display in the "Documenting Power BI Semantic Models" report, along with the corresponding INFO.xxx DAX functions to use.


INFO.TABLES( )

  • semantic model name

  • table name

  • table description

  • table is hidden


INFO.COLUMNS( )

  • column name

  • column description

  • column is hidden

  • column is unique

  • column is key


INFO.REFRESHPOLICIES( )

  • table name

  • table source expression

  • table rolling window period

  • table incremental period


INFO.MEASURES( )

  • display table name

  • display folder name

  • measure name

  • measure description

  • measure expression

  • measure is hidden


INFO.RELATIONSHIPS( )

  • table from

  • column from

  • from cardinality

  • table to

  • column to

  • to cardinality

  • single direction or bi direction

  • is active


INFO.CALCDEPENDENCY( )

  • object type

  • object name

  • object expression

  • referenced object type

  • referenced object name

  • referenced object expression


INFO.EXPRESSIONS( )

  • parameter name

  • parameter description

  • parameter expression


Additional INFO.xxx DAX functions can provide valuable information about the semantic model. And more functions are described in the link below.




Below, I share how I create two tables that provide information on tables, columns, and refresh policies.

You can create more tables with additional information using similar techniques.



DAX query for Tables and refresh information

EVALUATE
	VAR _tableinfo =
	SELECTCOLUMNS(
		INFO.TABLES(),
		"semantic_model_name", "sales_return",
		"table_id", [ID],
		"table_name", [Name],
		"table_description", [Description],
		"table_is_hidden", [IsHidden]
	)
	VAR _refreshinfo = SELECTCOLUMNS(
		INFO.REFRESHPOLICIES(),
		"table_id", [TableID],
		"table_source_expression", [SourceExpression],
		"table_rolling_window_period", [RollingWindowPeriods],
		"table_incremental_period", [IncrementalPeriods]
	)

	RETURN

		NATURALLEFTOUTERJOIN(
			_tableinfo,
			_refreshinfo
		)

The above process results in a table containing the following columns.

  • semantic_model_name

  • table_id

  • table_name

  • table_description

  • table_is_hidden

  • table_source_expression

  • table_rolling_window_period

  • table_incremental_period



DAX query for Tables and columns information

EVALUATE
	VAR _tableinfo =
	SELECTCOLUMNS(
		INFO.TABLES(),
		"semantic_model_name", "sales_return",
		"table_id", [ID],
		"table_name", [Name],
		"table_description", [Description],
		"table_is_hidden", [IsHidden]
	)
	VAR _columninfo =
	SELECTCOLUMNS(
		INFO.COLUMNS(),
		"table_id", [TableID],
		"column_id", [ID],
		"column_name", [ExplicitName],
		"column_description", [Description],
		"column_is_hidden", [IsHidden],
		"column_is_unique", [IsUnique],
		"column_is_key", [IsKey],
		"column_modified_time", [ModifiedTime],
		"column_structure_modified_time", [StructureModifiedTime]
	)

	RETURN

		NATURALLEFTOUTERJOIN(
			_tableinfo,
			_columninfo
		)

The above process results in a table containing the following columns.

  • semantic_model_name

  • table_id

  • table_name

  • table_description

  • table_is_hidden

  • column_id

  • column_name

  • column_description

  • column_is_hidden

  • column_is_unique

  • column_is_key

  • column_modified_time

  • column_structure_modified_time



As mentioned at the beginning of this blog post, when storing the results of the DAX query in the Fabric Lakehouse, refer to the previous blog post. Or, you can write the DAX query within the quotations in the PySpark code in the Fabric Notebook, as shown below.


# tables and columns information
# Importing the necessary library
from sempy import fabric
import pandas as pd

result = fabric.evaluate_dax(
    workspace = "incremental_refresh", dataset = "incremental_refresh_sales_return",
    dax_string=
	"""

	"""
    )

df = pd.DataFrame(result)
spark_df = spark.createDataFrame(df)

# Load the data into a Delta table
table_name = "testing_documentation"  # Replace with your desired table name
spark_df.write.format("delta").mode("overwrite").saveAsTable(table_name)


To summarize, I learned the powerful capabilities of INFO.xxx DAX functions for documenting semantic models in Power BI. By leveraging these functions, I can gather essential information about tables, columns, measures, calculation dependencies, relationships, parameters information, and refresh policies directly from the semantic model. Storing the results of these DAX queries in Fabric Lakehouse proves to be a highly effective method. This approach not only facilitates the creation of comprehensive documentation but also ensures that the documentation remains updated with schedule refresh configuration and it reflects any changes made to the model.


Creating documentation may not always be the most thrilling task, but I aim to make it enjoyable and impactful through this blog post, especially when documenting Power BI Semantic Models.

379 views0 comments

Comentarios


bottom of page